

## CO<sub>2</sub>/CH<sub>4</sub> Reforming over Ni–La<sub>2</sub>O<sub>3</sub>/5A: An Investigation on Carbon **Deposition and Reaction Steps**

J. Z. Luo, Z. L. Yu, 1 C. F. Ng, and C. T. Au<sup>2</sup>

Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China

Received November 8, 1999; revised May 31, 2000; accepted May 31, 2000

Carbon deposition and reaction pathways in CO<sub>2</sub>/CH<sub>4</sub> reforming over Ni-La<sub>2</sub>O<sub>3</sub>/5A have been studied by means of XRD, in situ TG, pulse experiments, chemical trapping, TEM, and EPR. The XRD results revealed that due to the formation of perovskite-like La<sub>2</sub>NiO<sub>4</sub> phase in Ni-La<sub>2</sub>O<sub>3</sub>/5A, the small-size (ca. 9 nm) Ni<sup>0</sup> crystallites formed in H<sub>2</sub> reduction remained unsintered during 48 h of on-stream reaction at 800°C. The accumulation of carbon on the active sites was the main reason for Ni-La<sub>2</sub>O<sub>3</sub>/5A deactivation. The detection of <sup>13</sup>CO<sub>2</sub> and CO<sub>2</sub> in O<sub>2</sub> pulsing onto a sample pretreated with <sup>13</sup>CH<sub>4</sub>/CO<sub>2</sub> confirmed that the deposited carbon was from both CH<sub>4</sub> and CO<sub>2</sub>. The <sup>13</sup>CO<sub>2</sub>/CO<sub>2</sub> molar ratio decreased with the rise in temperature, indicating that the contribution of CO2 toward deposited carbon was larger than that of CH<sub>4</sub> at higher temperatures. In CO and CO<sub>2</sub>/CH<sub>4</sub> atmospheres, we observed similar TG patterns and obtained identical TEM images of deposited carbon; we propose that carbon deposition is mainly via CO disproportionation. The observation of CD<sub>3</sub>COOH in CD<sub>3</sub>I chemical trapping experiments suggested that HCOO was an intermediate of CO2/CH4 reforming. The amount of CO<sub>2</sub> converted was roughly proportional to the amount of H present on the catalyst surface. These results indicate that CO2 activation could be H-assisted. Pulsing CH4 onto a H<sub>2</sub>-reduced Ni-La<sub>2</sub>O<sub>3</sub>/5A catalyst and a similar catalyst treated with CO2, we found that CH4 conversion was higher in the latter case. Hence, the idea of oxygen-assisted CH<sub>4</sub> dissociation is plausible. As for methane conversion,  $k_{\rm H}/k_{\rm D}$  of 1.2 and 1.1 at 600 and 700°C, respectively, were observed, implying that C-H cleavages are slow kinetic steps in CH<sub>4</sub>/CO<sub>2</sub> reforming. Based on these experimental results, we have derived reaction pathways for CO2/CH4 reforming, the decomposition of  $CH_xO$  (x=1 or 2) is considered to be the rate-determining step for syngas formation.

Key Words: CO<sub>2</sub>/CH<sub>4</sub> reforming; Ni-La<sub>2</sub>O<sub>3</sub>/5A; nickel catalyst; carbon deposition; reaction mechanism; chemical trapping; isotope effect.

## INTRODUCTION

The CO<sub>2</sub> reforming of methane for the production of syngas with H<sub>2</sub>/CO ratios suitable for F-T synthesis has aroused renew interest in recent years. In addition to various applications in chemical energy transmission (1-4), the conversion of CH<sub>4</sub> and CO<sub>2</sub> to value-added chemicals makes the CO<sub>2</sub>/CH<sub>4</sub> reforming process attractive. Catalysts such as transition metal carbides and sulfides, unsupported metals, and supported Group VIII metals have been investigated extensively for the reaction (5). It has been reported that catalyst deactivation due to carbon deposition is a serious problem (6, 7). A number of calculations on the thermodynamic potential of graphitic carbon deposition as related to reaction conditions suggested that carbon formation could be avoided thermodynamically at high temperatures (e.g., 1000°C) and with CO<sub>2</sub>/CH<sub>4</sub> ratios bigger than unity (8–10). However, from a standpoint of industry, it is desirable to operate the process at a relatively lower temperature and with a CO<sub>2</sub>/CH<sub>4</sub> ratio close to unity. This necessitates the use of a catalyst which could inhibit carbon formation under thermodynamically favorable conditions. Noble metals such as Rh and Ru are known to reduce carbon deposition (11, 12). However, considering the high cost and limited availability of these precious metals, it is more attractive to develop a suitable nickel catalyst to tackle the problem of carbon deposition. The origin of deposited carbon may be via CH<sub>4</sub> decomposition

$$CH_4 \rightarrow C + 2H_2$$
  $\Delta H^{\circ} = 75.2 \text{ kJ mol}^{-1}$ 

or CO disproportionation

$$2\text{CO} \rightarrow \text{C} + \text{CO}_2$$
  $\Delta \text{H}^{\circ} = -173.0 \,\text{kJ mol}^{-1}$ .

In general, carbon deposition can be reduced if nickel is supported on a metal oxide of strong basicity (13-15). It has been suggested that the increase in basicity of the support materials would promote CO<sub>2</sub> chemisorption. The increase in the concentration of adsorbed CO<sub>2</sub> hinders the formation of deposited carbon via reverse CO disproportionation. On the other hand, carbon deposition is closely related to



<sup>&</sup>lt;sup>1</sup> On leave from Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences.

<sup>&</sup>lt;sup>2</sup> To whom correspondence should be addressed. E-mail: pctau@hkbu.

catalyst structures. For example, Ni<sub>2</sub>AlO<sub>4</sub> spinel formed during preparation could markedly reduce carbon deposition over Ni/Al<sub>2</sub>O<sub>3</sub> in CO<sub>2</sub>/CH<sub>4</sub> reforming (16). The great difference in apparent activation energies for the reduction of NiO (18.0 kJ mol<sup>-1</sup>) and NiAl<sub>2</sub>O<sub>4</sub> (133.8 kJ mol<sup>-1</sup>) is indicative of a stronger Ni–O bond in the latter compound (17). It has been reported that the reduction of NiAl<sub>2</sub>O<sub>4</sub> would result in the formation of small-surface Ni crystallites which are resistant to sintering and carbon formation (18). Several recent publications have demonstrated that NiO–MgO solid solutions could stabilize small Ni particles and prolong catalyst lifetime (19–21). Zhang *et al.* (22, 23) attributed the improvement in catalytic activity and the reduction in carbon formation observed over a reduced Ni/La<sub>2</sub>O<sub>3</sub> catalyst to the isolation of nickel ensembles by LaO<sub>x</sub>.

To develop a high performance catalyst, it is necessary to clarify the reaction mechanism and to identify the ratedetermining steps. After investigating the isotopic kinetic effects over Ni/SiO<sub>2</sub> (24) and Rh/SiO<sub>2</sub> (25), Wang and Au concluded that CH<sub>4</sub> dissociation was a rate-determining step. Similar conclusions were drawn by Kim et al. (26) and Zhang et al. (27). Nakamura et al. (28) suggested that the step for CO<sub>2</sub> dissociation was rate-determining over supported Rh catalysts. However, Solymosi and co-workers (29, 30) considered that the activation and dissociation of CO<sub>2</sub> did not play an important role in the reforming of methane over a supported Rh catalyst. In addition, the idea of oxygen-assisted CH<sub>4</sub> dissociation has been suggested before. Nevertheless, Bradford and Vannice suggested that adsorbed O was unlikely to promote CH<sub>4</sub> dissociation (5, 21, 31). Based on the results of pulse surface reaction analysis (PSRA), Osaki et al. (32, 33) proposed that surface reaction of CH<sub>x</sub> and O was a rate-determining step. Bradford and Vannice established a kinetic model in which CHxO decomposition was thought to be a slow step (5, 21, 31). With these discrepancies in understanding, it is necessary to look further into the mechanism of the reaction.

In the present work,  $CO_2/CH_4$  reforming over Ni–La<sub>2</sub>O<sub>3</sub>/5A catalysts has been studied by XRD, *in situ* TG, pulse experiments, chemical trapping, TEM, and EPR. We selected 5A molecular sieve for its good affinity to  $CO_2$ . We found that by using La<sub>2</sub>NiO<sub>4</sub> as a precursor, the Ni<sup>0</sup> particles formed in hydrogen reduction were separated and stabilized; as a result, catalyst lifetime was prolonged. A mutual effect on the activation of  $CH_4$  and  $CO_2$  has been proposed.

#### **EXPERIMENTAL**

## 1. Catalyst Preparation

The Ni–La<sub>2</sub>O<sub>3</sub>/5A catalyst was prepared by adopting the citric acid complexing method. We added 6.3 g of 5A molecule sieve to a mixed solution of Ni(NO<sub>3</sub>)<sub>3</sub> · 6H<sub>2</sub>O

 $(0.5\,\mathrm{M},\,18.8\,\mathrm{ml})$ ,  $La(\mathrm{NO_3})_3\cdot 6H_2\mathrm{O}$   $(0.5\,\mathrm{M},\,37.6\,\mathrm{ml})$ , and citric acid  $(6\,\mathrm{g})$ . The resultant gel was heated and stirred continually until a viscous syrup was formed. The residue was calcined in air at  $500^\circ\mathrm{C}$  for 4 h and then at  $850^\circ\mathrm{C}$  for 6 h. The NiO loading of the catalyst was  $10\,\mathrm{wt}\%$ . Before testing, the catalyst  $(50\,\mathrm{mg})$  was first reduced *in situ* at  $500^\circ\mathrm{C}$  in a flow of  $H_2$   $(20\,\mathrm{ml}\,\mathrm{min}^{-1})$  for 1 h.

## 2. Catalyst Test

The catalysts were tested in a fixed-bed continuous flow quartz microreactor (i.d. = 4 mm) at atmospheric pressure. The flow rate of the reactant mixture ( $CO_2/CH_4$  molar ratio = 1) was 40 ml min<sup>-1</sup>. The effluent was analyzed on line by a TCD gas chromatography (Shimadzu -8A) with Spherocarb and Porapak Q columns.

### 3. In Situ TG

The deposition and reactivity of carbon on the catalyst were examined using a thermal gravimeter (TG) (Shimadzu DT-40). The molar composition of reactant mixture was  $CH_4/N_2 = 1/3$  for methane decomposition,  $CO/N_2 = 1/3$ for CO disproportionation, and  $CO_2/CH_4/N_2 = 1/1/2$  for  $CO_2/CH_4$  reforming. The total flow rate was 40 ml min<sup>-1</sup>. The sample (10 mg) was first reduced in H<sub>2</sub> at 500°C for 1 h in a fixed-bed continuous flow microreactor and then cooled down to 25°C and transferred to the quartz sample holder (i.d. = 3 mm) in air. After purging with reactant mixture at room temperature for 10 min, the sample was program-heated to 800°C at a rate of 20°C min<sup>-1</sup>. The weight change of the sample was simultaneously recorded. After carbon deposition, a flow of CO<sub>2</sub>/N<sub>2</sub> (1/1, 40 ml min<sup>-1</sup>) mixture was introduced to the catalyst and the weight loss was monitored at 800°C. As for the investigation of carbon deposition at working conditions, after heating the reduced sample to the reaction temperature in N<sub>2</sub>, we introduced the reactant mixture to the catalyst and monitored the weight increase at the same temperature.

## 4. Pulse Experiment

In the pulse experiment, the catalyst (20 mg) was placed in a quartz microreactor and reduced in a  $H_2$  flow (10 ml  $\rm min^{-1}$ ) at  $500^{\circ}\rm C$  for 1 h, followed by heating to the reaction temperature in a flow of He (10 ml  $\rm min^{-1}$ ). In each pulsing, 67.5  $\mu l$  of CH<sub>4</sub>, CO<sub>2</sub>, CO, O<sub>2</sub>,  $^{13}\rm CH_4/CO_2$ , CH<sub>4</sub>/CD<sub>4</sub>, CH<sub>4</sub>/CO<sub>2</sub> or CD<sub>4</sub>/CO<sub>2</sub> (molar ratio, 1/1) was injected into the system. The effluent gases were monitored on line by a mass spectrometer (HP G-1800A). In order to identify the products correctly, we have taken into account the interference due to isotopes and fragments.

## 5. Chemical Trapping

In the chemical trapping experiments, the catalyst (20 mg) was placed in a quartz microreactor and reduced

in a  $H_2$  flow (10 ml min<sup>-1</sup>) at  $500^{\circ}$ C for 1 h, followed by heating to the reaction temperature in a flow of He (10 ml min<sup>-1</sup>). We first pulsed  $CO_2/CH_4$  (molar ratio, 1/1) onto the sample until a steady state was reached, then  $CD_3I$  (5  $\mu$ l) and reactant mixture were injected into the system. The carrier gas was He (10 ml min<sup>-1</sup>) and the pulse size was 67.5  $\mu$ l. The outlet gases were analyzed on line by a mass spectrometer (HP G-1800A). The interference due to isotopes and fragments was taken into account in order to identify the products correctly.

## 6. Catalyst Characterization

Chemisorption experiments were conducted in a quartz microreactor at room temperature. The sample was first reduced in  $H_2$  at  $500^{\circ}$ C for 1 h, followed by cooling in  $H_2$  to room temperature and He purging for 10 min. We kept on pulsing CO to the catalyst until there was no observable increase in CO signal intensity. The uptake of CO was then estimated and used to calculate Ni metal dispersion and particle size, assuming that each surface Ni site chemsorbs one CO molecule, i.e., CO/Ni<sub>surface</sub> = 1.

The specific surface areas of the catalysts were measured by the BET method using a NOVA-1200 instrument. The phase compositions were determined by a X-ray diffractrometer (XRD, Rigaku D-MAX) with monochoromatized Cu $K\alpha$  radiation ( $\lambda=0.15406$  nm). The Ni particle size was estimated according to the half height width of the Ni (111) peak obtained in XRD investigation.

TEM images of deposited carbon were taken by means of a JEM-100CX (JEOL) operated at 100 KV. The sample of deposited carbon was treated with 3 M HNO $_3$  and then dispersed by supersonic waves in aqueous surfactant solution before mounting on a Cu grid for TEM observation.

The electron paramagnetic resonance (EPR) experiments were carried out on a JES-TS100 spectrometer. Samples (ca. 1.5 g) treated under various conditions were examined in the X-band at 25°C. The EPR system was equipped with a quartz-tube reactor which was transferable conveniently between the sample chamber and an oven. The sample in the quartz reactor could be heated to  $800^{\circ}$ C and exposed to gas(es) without being exposed to air.

## **RESULTS**

# 1. The Physicochemical Properties of Ni–La<sub>2</sub>O<sub>3</sub>/5A Catalysts

Table 1 shows the physicochemical properties of Ni–La<sub>2</sub>O<sub>3</sub>/5A. According to the patterns (not shown) obtained in XRD investigations, strong signals of La<sub>2</sub>NiO<sub>4</sub> and 5A phases as well as weak signals of Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> phases were observed. After reduction in H<sub>2</sub> at  $500^{\circ}$ C, nickel existed mainly as Ni<sup>0</sup> particles, with the diameter estimated to be ca. 9 nm. After 48 h of on-stream CO<sub>2</sub>/CH<sub>4</sub> reform-

TABLE 1

Physicochemical Properties of the Ni-La<sub>2</sub>O<sub>3</sub>/5A Catalyst

| Specific surface area (m²/g) | CO uptake<br>(μmol/g) | Ni dispersion <sup>a</sup> (%) |    | Ni particle<br>size <sup>b</sup> (nm) |
|------------------------------|-----------------------|--------------------------------|----|---------------------------------------|
| 157                          | 46                    | 3.4                            | 29 | 9                                     |

<sup>&</sup>lt;sup>a</sup> Based on CO chemisorption data.

ing, there were no significant changes in phase composition and Ni<sup>0</sup> particle size. The results indicated that the Ni–La<sub>2</sub>O<sub>3</sub>/5A catalyst was stable during the reforming reaction. Based on the amount of chemisorbed CO (46  $\mu$ mol g<sup>-1</sup>), Ni dispersion was estimated to be ca. 3.4%. The specific surface area of 5A molecular sieve was ca. 300 m² g<sup>-1</sup>; for the Ni–La<sub>2</sub>O<sub>3</sub>/5A catalyst, it was 157 m² g<sup>-1</sup>. Such a drastic drop in surface area might be caused by the formation of new phases and/or the collapse of 5A crystallite during the preparation process. It should be noted that the diameter of nickel particles estimated by CO chemsorption was 29 nm, about 3 times that (9 nm) estimated according to XRD line broadening.

## 2. Catalytic Performance

The catalytic performance of Ni–La<sub>2</sub>O<sub>3</sub>/5A is shown in Table 2. At  $450^{\circ}$ C, a significant amount of syngas was formed. With the rise in temperature, the conversions of CO<sub>2</sub> and CH<sub>4</sub> increased. At  $800^{\circ}$ C, CO<sub>2</sub> and CH<sub>4</sub> conversions were 79.7 and 92.1%, respectively. Stoichiometrically, CO<sub>2</sub> and CH<sub>4</sub> conversions should be the same at CO<sub>2</sub>/CH<sub>4</sub> molar ratio = 1 if syngas is the only product. From Table 2, however, one observes that CH<sub>4</sub> conversion was lower than CO<sub>2</sub> conversion at or below  $650^{\circ}$ C; whereas above  $650^{\circ}$ C, it was the other way around. The unequivalence of CO<sub>2</sub> and CH<sub>4</sub> conversions reveals the presence of secondary

TABLE 2 The Performance of Ni–La $_2$ O $_3$ /5A for the Production of Syngas in CO $_2$ /CH $_4$  Reforming

| Temp. | Conv            | ·. (%)          | TOF (s <sup>-1</sup> ) |        |       |       |
|-------|-----------------|-----------------|------------------------|--------|-------|-------|
|       | CH <sub>4</sub> | CO <sub>2</sub> | CH <sub>4</sub>        | $CO_2$ | CO    | $H_2$ |
| 450   | 3.23            | 4.37            | 0.21                   | 0.28   | 0.49  | 0.25  |
| 500   | 8.25            | 9.52            | 0.53                   | 0.62   | 1.15  | 0.58  |
| 550   | 16.34           | 17.12           | 1.06                   | 1.11   | 2.17  | 1.53  |
| 600   | 29.02           | 30.31           | 1.88                   | 1.96   | 3.84  | 3.02  |
| 650   | 42.61           | 44.33           | 2.76                   | 2.87   | 5.63  | 4.83  |
| 700   | 63.25           | 59.02           | 4.09                   | 3.82   | 7.91  | 7.15  |
| 750   | 80.71           | 72.86           | 5.22                   | 4.71   | 9.94  | 9.24  |
| 800   | 92.12           | 79.74           | 5.96                   | 5.16   | 11.12 | 10.44 |

Note. Reaction conditions: feedstock  $CH_4/CO_2$  molar ratio = 1;  $GHSV = 48,000 \ ml \ h^{-1} \ g^{-1}.$ 

<sup>&</sup>lt;sup>b</sup> Based on XRD results.

(a) CO<sub>2</sub>/CH<sub>4</sub>

reactions under the reaction conditions adopted. The detection of  $H_2O$  in the outlet was a clear indication of the occurrence of the reverse water gas shift (RWGS) reaction.

The stability of the Ni–La<sub>2</sub>O<sub>3</sub>/5A catalyst at  $800^{\circ}$ C was investigated. The conversions of CO<sub>2</sub> and CH<sub>4</sub> decreased only moderately with time. Over a period of 48 h, CO<sub>2</sub> and CH<sub>4</sub> conversions decreased gradually from the initial values of 79.7 and 92.1%, respectively, to 75.0 and 80.2%.

### 3. TG and TEM Studies

Figure 1 shows the TG profiles of Ni-La<sub>2</sub>O<sub>3</sub>/5A in a flow of CH<sub>4</sub>/N<sub>2</sub>, CO/N<sub>2</sub>, and CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub>. In a CH<sub>4</sub>/N<sub>2</sub> flow (Fig. 1a), weight gain started at 585°C and increased rapidly to reach a plateau at 635°C. In a CO/N<sub>2</sub> flow (Fig. 1b), the threshold temperature for weight gain was at 460°C, and between 460 and 580°C there was a linear rise in weight gain with a plateau appearing above 580°C. The amounts of weight gain in CH<sub>4</sub> decomposition and CO disproportionation were 100 and 80 mg  $g^{-1}$ , respectively. In a CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> flow, the onset temperature for weight gain was 650°C (Fig. 1c), a plateau was reached after a period of ca. 10 min at 800°C; the weight gain was 60 mg g<sup>-1</sup>. If we introduced a flow of CO2/N2 at 800°C to the catalyst over which a plateau had been observed, significant weight loss took place; at or below 700°C, such a weight loss was not obvious. It is clear that at 800°C, the accumulated carbonaceous species became reactive towards CO<sub>2</sub>.

Figure 2 shows the TEM images of deposited carbon collected after the Ni–La $_2$ O $_3$ /5A catalyst had been heated from room temperature to 800°C and then kept at 800°C for 10 min in various atmospheres, respectively. It is apparent that there were encapsulated as well as whisker carbon. The former was mostly formed in a CH $_4$ /N $_2$  atmosphere,

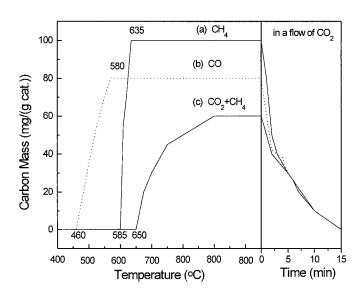
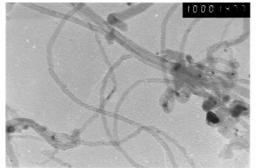
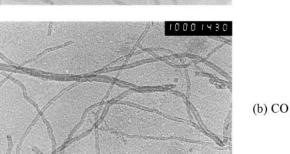





FIG. 1. In situ TG profiles of Ni–La $_2O_3/5A$  kept in (a) CH $_4$ , (b) CO, and (c) CH $_4/CO_2$  (1/1) before exposure to a flow of CO $_2$  at 800°C.





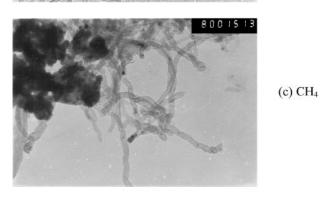



FIG. 2. TEM images of deposited carbon formed in (a)  $CO_2/CH_4$ ; (b) CO; (c)  $CH_4$  atmosphere.

whereas the latter was formed in a CO/N<sub>2</sub> or CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> atmosphere. The whisker carbon formed in CO/N<sub>2</sub> atmosphere was estimated to be  $5\sim15$  nm in diameter. When the catalyst was exposed to a CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> atmosphere, the diameter of the whisker carbon was in the range of  $5\sim25$  nm.

Figure 3 shows the amounts of carbon deposited on Ni–La<sub>2</sub>O<sub>3</sub>/5A as related to reaction time at various temperatures in CH<sub>4</sub>/N<sub>2</sub>, CO/N<sub>2</sub>, and CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> atmospheres, respectively. In a CH<sub>4</sub>/N<sub>2</sub> atmosphere, the amount of deposited carbon augmented gradually with time and reached a constant value after ca. 40 min; the amount of carbon deposited increased with reaction temperature. In a CO/N<sub>2</sub> atmosphere, carbon deposition reached a constant value within 20 min and the extent of carbon deposition decreased with temperature rise. As for a CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub>

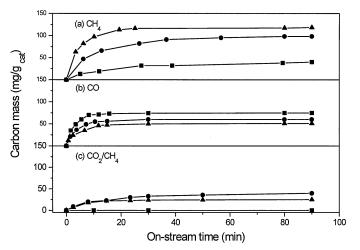



FIG. 3. TG profiles of Ni–La<sub>2</sub>O<sub>3</sub>/5A versus time on stream at 600 ( $\blacksquare$ ), 700 ( $\bullet$ ), and 800°C ( $\triangle$ ) in various atmospheres: (a) CH<sub>4</sub>, (b) CO, and (c) CO<sub>2</sub>/CH<sub>4</sub>.

atmosphere, there was no carbon deposition at  $600^{\circ}$ C. At 700 or  $800^{\circ}$ C, the deposition of carbon increased rather gradually with time; the amount of carbon deposited at  $700^{\circ}$ C was larger than that deposited at  $800^{\circ}$ C.

## 4. <sup>13</sup>CH<sub>4</sub>/CO<sub>2</sub> Pulse Experiment

In order to investigate the origin of deposited carbon and the reaction mechanism of  $CO_2/CH_4$  reforming,  $^{13}CH_4/CO_2$  pulse experiments were performed. We pulsed  $^{13}CH_4/CO_2$  (molar ratio, 1/1) at a desired temperature onto the Ni–La<sub>2</sub>O<sub>3</sub>/5A catalyst which had been H<sub>2</sub>-reduced at 500°C for 1 h and monitored the  $^{13}CO_2/CO_2$  ratio (Fig. 4). After

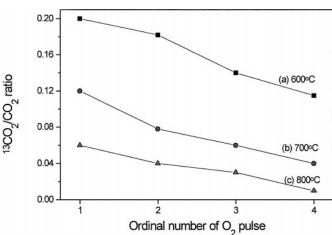
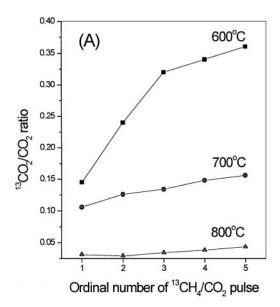




FIG. 5.  $^{13}CO_2/CO_2$  ratio versus  $O_2$  pulse number after 5 pulses of  $^{13}CH_4/CO_2$  at (a) 600, (b) 700, and (c) 800°C over Ni–La $_2O_3/5A$ .

5 pulses of  $^{13}$ CH<sub>4</sub>/CO<sub>2</sub>, the deposited carbon was treated with 4 O<sub>2</sub> pulses at the same temperature; the  $^{13}$ CO<sub>2</sub>/CO<sub>2</sub> ratio (Fig. 5) and the amount of  $^{13}$ CO<sub>2</sub> generated (Fig. 6) were monitored. The signal with m/z=45 detected in the pulse experiments was attributed to  $^{13}$ CO<sub>2</sub> because its intensity was much stronger than the expected contribution (1%) of natural isotopic carbon in CO<sub>2</sub>; also, we detected no formation of formic acid (main peaks at m/z=45 and 46). Over the H<sub>2</sub>-reduced Ni–La<sub>2</sub>O<sub>3</sub>/5A sample, with the increase of  $^{13}$ CH<sub>4</sub>/CO<sub>2</sub> pulse number, the  $^{13}$ CO<sub>2</sub>/CO<sub>2</sub> ratio increased; such an increase was the most obvious at  $^{600}$ °C (Fig. 4). It indicated that the accumulation and oxidation of  $^{13}$ C species (derived from  $^{13}$ CH<sub>4</sub> dissociation) had taken place on the catalyst. The CH<sub>4</sub> and CO<sub>2</sub> conversions at



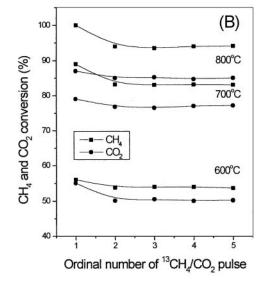



FIG. 4. (A)  $^{13}$ CO<sub>2</sub>/CO<sub>2</sub> molar ratio and (B) CH<sub>4</sub> and CO<sub>2</sub> conversions versus CH<sub>4</sub>/CO<sub>2</sub> pulse number at various tempertures over prereduced Ni–La<sub>2</sub>O<sub>3</sub>/5A.

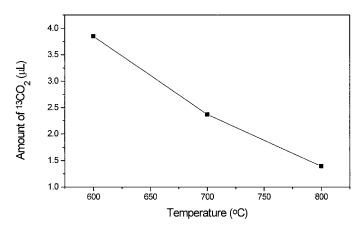



FIG. 6. The total amount of  $^{13}\text{CO}_2$  generated in 4 pulses of  $\text{O}_2$  versus temperature over a Ni–La<sub>2</sub>O<sub>3</sub>/5A sample treated with 5 pulses of  $^{13}\text{CH}_4/\text{CO}_2$ .

various tempertures are also shown in Fig. 4. One can observe that after the first pulse of <sup>13</sup>CH<sub>4</sub>/CO<sub>2</sub>, the CH<sub>4</sub> and CO<sub>2</sub> conversions stayed almost unchanged with the rise in the pulse number. The somewhat higher conversions in the first pulse might be due to the initial adsorption of CH<sub>4</sub> and  $CO_2$  on the catalyst. When  $O_2$  was then pulsed onto the sample, there was no  $O_2$  (m/z = 32) detected in the effluent; the O2 must have been consumed in the oxidation of surface species and/or adsorbed by the reduced catalyst. As both <sup>13</sup>CO<sub>2</sub> and CO<sub>2</sub> were detected in the effluent, one can affirm that in CO<sub>2</sub>/CH<sub>4</sub> reforming, both CH<sub>4</sub> and CO<sub>2</sub> contributed to the formation of deposited carbon. The <sup>13</sup>CO<sub>2</sub>/CO<sub>2</sub> molar ratio decreased with O2 pulse number (Fig. 5), suggesting that the <sup>13</sup>C species originated from <sup>13</sup>CH<sub>4</sub> was more reactive toward O<sub>2</sub> than the <sup>12</sup>C species from CO<sub>2</sub>. The total amount of  ${}^{13}CO_2$  produced in 4 pulses of  $O_2$  (Fig. 6) and the <sup>13</sup>CO<sub>2</sub>/CO<sub>2</sub> molar ratio obtained over Ni–La<sub>2</sub>O<sub>3</sub>/5A pretreated with 5 pulses of <sup>13</sup>CH<sub>4</sub>/CO<sub>2</sub> (Fig. 5) decreased with the rise in temperature. That is to say, depending upon reaction temperature, the contribution of CH<sub>4</sub> and CO<sub>2</sub> in CO<sub>2</sub>/CH<sub>4</sub> reforming toward carbon deposition varied.

### 5. Pulse Experiments

5.1.  $CO_2$ – $CH_4$ . Figure 7 shows the results of introducing 5 pulses of  $CO_2$  followed by 5 pulses of  $CH_4$  to a  $H_2$ -reduced Ni– $La_2O_3/5A$  sample at  $800^{\circ}$ C. The generation of CO in  $CO_2$ -pulsing was an indication of  $CO_2$  dissociation and partial oxidation of the reduced catalyst. We observed that  $CO_2$  conversion and  $CO_2$  yield decreased with  $CO_2$  pulse number. When  $CH_4$  was pulsed in after the 5 pulses of  $CO_2$ , we detected  $CO_2$  in the outlet. These results illustrated that the surface  $CO_2$  species generated in  $CO_2$  dissociation reacted with  $CC_2$  to produce  $CO_2$ . Like results were obtained at  $CO_2$  and  $CC_3$  and  $CC_4$  converted and the amount of  $CO_3$  produced are listed in Table 3. The amounts of consumed  $CO_2$  and  $CC_3$  pulses, remarkably with the rise in temperature. In the  $CO_2$  pulses,

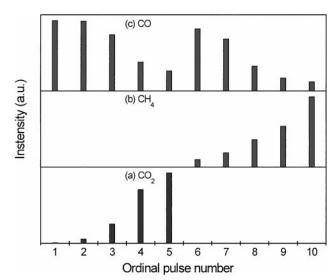



FIG. 7. The MS signals of (a)  $CO_2$ , (b)  $CH_4$ , and (c) CO detected in five pulses of  $CO_2$  followed by 5 pulses of  $CH_4$  over  $H_2$ -reduced Ni–La<sub>2</sub>O<sub>3</sub>/5A at 800°C.

the amount of  $CO_2$  consumed was more than that of CO produced and the difference,  $\Delta$ , increased with a rise in temperature.

5.2.  $CH_4$ – $CO_2$ . Figure 8 shows the profiles of 5 pulses of  $CH_4$  followed by 5 pulses of  $CO_2$  over a  $H_2$ -reduced Ni– $La_2O_3/5A$  sample at  $800^{\circ}C$ . The increase in  $CH_4$  intensity with the advance in  $CH_4$  pulse number indicated that  $CH_4$  decomposition was more substantial in the first few pulses. After the five pulses of  $CH_4$ , with the pulsing of  $CO_2$  onto the catalyst, we detected CO. Similar results were observed at 600 and  $700^{\circ}C$ . The amounts of  $CH_4$  and  $CO_2$  consumed and CO produced are listed in Table 4. The amount of converted  $CH_4$  increased with the rise in temperature. At or above  $700^{\circ}C$ ,  $CO_2$  dissociated to CO and O. The C species generated in  $CH_4$  decomposition reacted with the O originated from  $CO_2$  to produce CO, causing the amount of CO produced to exceed the amount of  $CO_2$  converted as reflected by the negative values of  $\Delta$ .

TABLE 3

The Total Amounts of Converted CO<sub>2</sub> and CH<sub>4</sub> and the Total Amount of CO Generated in the Pulsing of CO<sub>2</sub> and CH<sub>4</sub> over H<sub>2</sub>-Reduced Ni-La<sub>2</sub>O<sub>3</sub>/5A as Illustrated in Fig. 7

| Temp. | CO <sub>2</sub> pulse |         |        | CH <sub>4</sub> ]    | CH <sub>4</sub> /CO <sub>2</sub> pulse <sup>a</sup> |         |
|-------|-----------------------|---------|--------|----------------------|-----------------------------------------------------|---------|
| (°C)  | CO <sub>2</sub> (μl)  | CO (μl) | Δ (μl) | CH <sub>4</sub> (μl) | CO (μl)                                             | CO (µl) |
| 600   | 8.1                   | 6.0     | 2.1    | 8.8                  | 1.4                                                 | 280     |
| 700   | 58.7                  | 55.3    | 3.4    | 114.3                | 36.5                                                | 480     |
| 800   | 293.0                 | 283.5   | 9.5    | 308.5                | 219.4                                               | 614     |

Note.  $\Delta$  is the difference between the amount of  $CO_2$  converted and the amount of CO produced.

<sup>&</sup>lt;sup>a</sup>Produced from 10 pulses of CO<sub>2</sub>/CH<sub>4</sub> (1:1 in molar).

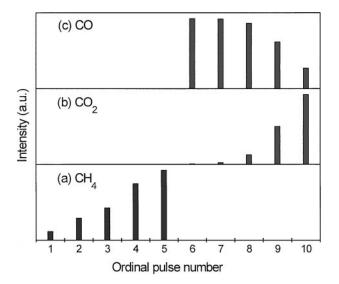



FIG. 8. The MS signals of (a)  $CH_4$ , (b)  $CO_2$ , and (c) CO detected in five pulses of  $CH_4$  followed by 5 pulses of  $CO_2$  over  $H_2$ -reduced Ni–La $_2O_3/5A$  at  $800^{\circ}C$ .

5.3.  $CH_4/CO_2$  and  $CD_4/CO_2$ .  $CH_4/CO_2$  pulsing over  $H_2$ -reduced Ni– $La_2O_3/5A$  was investigated at 600, 700, and 800°C, respectively (Fig. 9). Both  $CH_4$  and  $CO_2$  conversions increased with the rise in reaction temperature. At 600°C,  $CH_4$  conversion (50%) was lower than  $CO_2$  conversion (54%), while at 700 and 800°C,  $CH_4$  conversions (83 and 93%) were higher than the  $CO_2$  conversions (77 and 85%), respectively. These results are consistent with the data obtained in the continuous flow reactor (Table 1). The total amounts of CO produced in 10 pulses of  $CH_4/CO_2$  are also listed in Table 3. One can observe that the total amount of CO produced in 10 pulses of  $CH_4/CO_2$  was much larger than that obtained in 5 pulses of  $CO_2$  and then 5 pulses of  $CH_4$ .

The results of  $CD_4/CO_2$  pulsing are also illustrated in Fig. 9. Compared to the results of  $CH_4/CO_2$  pulsing, deuterium isotope effect on methane conversion was observed at 600 and 700°C, but not at 800°C. There was no obvious isotope effect on the conversion of  $CO_2$ . The ratios of  $CH_4$ 

TABLE 4 The Total Amounts of Converted  $CH_4$  and  $CO_2$  and the Total Amount of CO Generated in the Pulsing of  $CH_4$  and  $CO_2$  over  $H_2$ -Reduced Ni-La<sub>2</sub>O<sub>3</sub>/5A as Illustrated in Fig. 8

| Temperature | CH <sub>4</sub> pulse |         | CO <sub>2</sub> pulse |         |        |
|-------------|-----------------------|---------|-----------------------|---------|--------|
| (°C)        | CH <sub>4</sub> (μl)  | CO (µl) | CO <sub>2</sub> (μl)  | CO (µl) | Δ (μl) |
| 600         | 1.3                   | 0.0     | 13.0                  | 14.0    | -1.0   |
| 700         | 67.5                  | 0.0     | 101.2                 | 114.8   | -13.6  |
| 800         | 113.4                 | 4.2     | 303.8                 | 336.8   | -33.0  |

Note.  $\Delta$  is the difference between the amount of  $CO_2$  converted and the amount of CO produced.

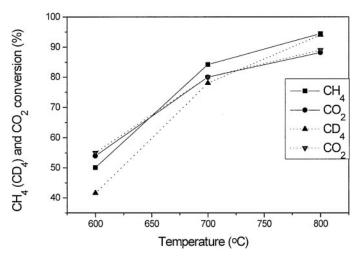



FIG. 9. The conversion of methane and  $CO_2$  versus temperature over  $H_2$ -reduced Ni–La $_2O_3/5A$  in  $CH_4/CO_2$  and  $CD_4/CO_2$  (dotted lines) pulse experiments.

and  $CD_4$  conversions were 1.2 and 1.1 at 600 and 700°C, respectively.

5.4.  $CH_4/CD_4$ . Figure 10 illustrates the methane conversion and methane isotopic distribution after a pulse of  $CH_4/CD_4$  (molar ratio, 1/1) over Ni–La<sub>2</sub>O<sub>3</sub>/5A. At 600°C, the  $CH_4$  and  $CD_4$  conversions were 4.0 and 3.7%, respectively, resulting in  $R_H/R_D$  of 1.08. At 700°C, the corresponding conversions were 12.9 and 12.5%, resulting in  $R_H/R_D$  = 1.03. Theoretically, if the breaking of the C–H bond was the rate-determining step for methane activation, the  $R_H/R_D$  should be 1.99 and 1.86 at reaction temperatures of 600 and 700°C, respectively (34). The near unity of  $R_H/R_D$  in  $CH_4/CD_4$  pulsing indicated that the dehydrogenation of methane over Ni–La<sub>2</sub>O<sub>3</sub>/5A was largely reversible, i.e.,  $CH_4 \Leftrightarrow CH_x + (4 - x)H$ .

## 6. Chemical Trapping

Adding an alkylation reagent to convert surface formyl species into the corresponding aldehyde or carboxylic acid is a common method of chemical trapping. Methyl iodide, a highly effective trapping reagent, has been widely used (35). Following the introduction of 5  $\mu$ l of CD<sub>3</sub>I onto a catalyst at working conditions,  $CD_3COOH$  (m/z=63),  $CD_3OCD_3$ (m/z=52), CD<sub>3</sub>CHO (m/z=47), as well as CD<sub>4</sub> (m/z=20), DCO<sub>2</sub>D (m/z=48), and D<sub>2</sub>CO (m/z=32) were detected. No ethane or ethene was observed. Figure 11 shows the relative intensities of the products. When COOH, O, and CHO were trapped by CD<sub>3</sub> radicals, CD<sub>3</sub>COOH, CD<sub>3</sub>OCD<sub>3</sub>, and CD<sub>3</sub>CHO were the expected products. The generation of CD<sub>4</sub>, DCO<sub>2</sub>D, and D<sub>2</sub>CO were less expected. It is apparent that the CD<sub>3</sub> radical generated in CD<sub>3</sub>I dissociation could further decompose to give D which reacted with surface CD<sub>3</sub>, CO<sub>2</sub>, and CO to produce, respectively, CD<sub>4</sub>, DCO<sub>2</sub>D, and D<sub>2</sub>CO. Although with lower intensities,

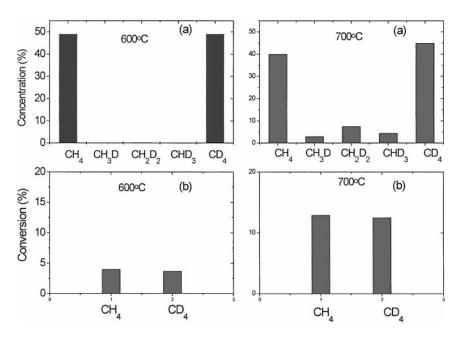



FIG. 10. (a) Distribution of isotopic methane species and (b) conversion of methane after a single pulse of  $CH_4/CD_4$  (1/1) reaction over Ni–La<sub>2</sub>O<sub>3</sub>/5A at 600 and 700°C.

signals due to isotopic H/D exchanged formic acid (m/z= 46) and formaldehyde (m/z= 30) were detected. The presence of CD<sub>3</sub>COOH, CD<sub>3</sub>CHO, and CD<sub>3</sub>OCD<sub>3</sub> implied that there were COOH, CHO, and O on the catalyst.

### 7. EPR Studies

Figure 12 shows the EPR profiles of the catalyst after  $H_2$ -reduction at  $400^{\circ}$ C. A strong and smooth line centered at around g = 2.4 was observed over a Ni–La<sub>2</sub>O<sub>3</sub>/5A sample that had been  $H_2$ -reduced at  $500^{\circ}$ C for 1 h. The strong signal could be attributed to metallic nickel (36). In order to minimize the disturbance due to metallic nickel, we employed a 0.5 wt% Ni–La<sub>2</sub>O<sub>3</sub>/5A sample for EPR investiga-

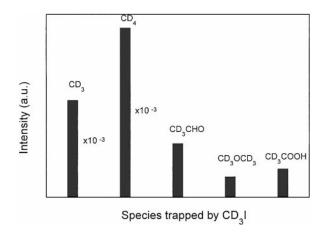



FIG. 11. Patterns of CHO, O, and COOH trapped by  $CD_3I$  over Ni-La<sub>2</sub>O<sub>3</sub>/5A. For comparison, the patterns of  $CD_3$  and  $CD_4$  are also shown.

tion. For comparison purposes, a La<sub>2</sub>O<sub>3</sub>-5A sample was also investigated. No EPR signal was observed over the fresh 0.5 wt% Ni-La<sub>2</sub>O<sub>3</sub>/5A catalyst. After reduction at 400°C for 0.5 h, a narrow symmetric peak centered at g = 2.003with a width of 10 G appeared. This signal could be assigned to trapped electrons (36). Exposure of the catalyst to air at room temperature caused this signal to decrease in intensity by ca. 30%, possibly due to the coupling interaction between paramagnetic gaseous O2 and the trapped electrons on the surface. This result implied that ca. 30% of the trapped electrons were on the surface. The peak heights of the trapped electron signals detected over 0.5 wt% Ni-La<sub>2</sub>O<sub>3</sub>/5A as well as that detected over La<sub>2</sub>O<sub>3</sub>-5A versus reduction temperature are shown in Fig. 13. With the rise in reduction temperature to 400°C, the signal intensity of trapped electrons increased to a maximum value. Further treatment above 400°C would cause the signal to decrease, a result of interaction among the increased population of trapped electrons. It is clear that the intensity of trapped electrons detected over 0.5 wt% Ni-La<sub>2</sub>O<sub>3</sub>/5A was much higher than that over La<sub>2</sub>O<sub>3</sub>/5A.

#### DISCUSSION

### 1. Catalytic Performance

In Table 1, one can observe that the diameter of nickel particles deduced from CO chemisorption was 29 nm, which is about 3 times that (9 nm) estimated according to the Scherrer equation. Over a 17 wt% Ni/La<sub>2</sub>O<sub>3</sub> catalyst, Verykios *et al.* (23, 37) observed that the nickel particle size (110  $\sim$  324 nm) deduced from H<sub>2</sub> and CO chemisorption

was up to  $3 \sim 10$  times that (33 nm) estimated according to the XRD line broadening results. They attributed this to the decoration of the nickel particle by  $LaO_x$  originating from the support. According to the XRD results, there was perovskite-like  $La_2NiO_4$  in the fresh  $Ni-La_2O_3/5A$  catalyst. It is reasonable to speculate that during  $H_2$ -reduction, the aggregation of nickel atoms would be hindered by  $La_2O_3$ . Consequently, smaller nickel particles would be obtained in  $Ni-La_2O_3/5A$ . According to XRD estimation, the size (9 nm) of the nickel particles generated in  $Ni-La_2O_3/5A$  is

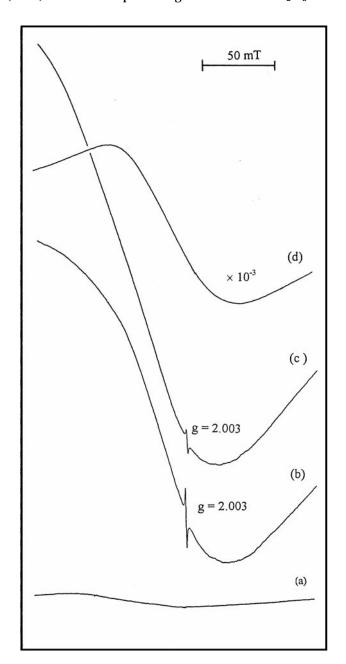



FIG. 12. EPR profiles of (a) fresh 0.5 wt% Ni–La<sub>2</sub>O<sub>3</sub>/5A; (b) 0.5 wt% Ni–La<sub>2</sub>O<sub>3</sub>/5A after H<sub>2</sub>-reduced at 400°C; and (c) after purging with CO<sub>2</sub> for 30 min at 400°C; (d) 10 wt% Ni–La<sub>2</sub>O<sub>3</sub>/5A after H<sub>2</sub>-reduced at 500°C.

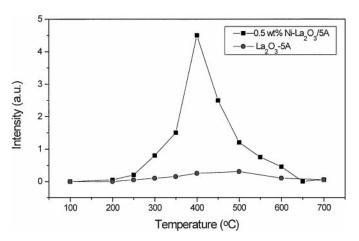



FIG. 13. The intensity of trapped electron signal as a function of  $H_2$ -reduced temperature over ( $\blacksquare$ ) La<sub>2</sub>O<sub>3</sub>/5A and ( $\blacksquare$ ) 0.5 wt% Ni–La<sub>2</sub>O<sub>3</sub>/5A.

much smaller than that (33 nm) observed over the Ni/La<sub>2</sub>O<sub>3</sub> catalyst reported by Zhang et al. (23). Compared to the estimation of XRD results, the larger nickel particles deduced from CO chemisorption might be due to the suppression of CO chemisorption (37), a result of the isolation effect of La<sub>2</sub>O<sub>3</sub> on nickel particles in the Ni-La<sub>2</sub>O<sub>3</sub>/5A catalyst. In other words, using La<sub>2</sub>NiO<sub>4</sub> as a nickel precursor is a better means for producing fine Ni<sup>0</sup> particles. Supports which are basic have been reported to be capable of activating CO<sub>2</sub> and are favorable for the elimination of deposited carbons (5, 26). It has been pointed out that the Ni-La<sub>2</sub>O<sub>3</sub>/5A catalyst showed an affinity to CO2 similar to that of 5A zeolite (38). From Table 2, one can observe that at 450°C, the TOFs of CH<sub>4</sub> and CO<sub>2</sub> are 0.21 and 0.28 s<sup>-1</sup>, respectively, over Ni-La<sub>2</sub>O<sub>3</sub>/5A. Under similar experimental conditions, the corresponding TOFs are 0.01 and 0.01 s<sup>-1</sup>, respectively, over 1 wt% Ir/Al<sub>2</sub>O<sub>3</sub> (5, 11). These results suggested that Ni-La<sub>2</sub>O<sub>3</sub>/5A is an active catalyst for CO<sub>2</sub>/CH<sub>4</sub> reforming. Generally speaking, there are two reasons for the deactivation of nickel-based catalysts in CO<sub>2</sub>/CH<sub>4</sub> reforming: (i) the blocking of active sites by carbonaceous deposits (7, 23, 39, 40); and (ii) the sintering of nickel particles (1, 14, 41). We observed that the catalytic activity of Ni-La<sub>2</sub>O<sub>3</sub>/5A decreased gradually during 48 h of on-stream reaction. Since the size of nickel particles remained unchanged, one can affirm that Ni<sup>0</sup> sintering in Ni-La<sub>2</sub>O<sub>3</sub>/5A was not significant. Therefore, we suggest that the gradual degradation of the catalyst is mainly due to carbon deposition.

## 2. Carbon Deposition

It has been pointed out that carbon deposition in  $CO_2/CH_4$  reforming can deactivate nickel catalysts (21, 42). The deposition of carbon is mainly due to methane decomposition or CO disproportionation (5, 20, 37, 42, 43). Over Ni–La<sub>2</sub>O<sub>3</sub>/5A at 600 or 650°C, the conversion of  $CO_2$  was higher than that of  $CH_4$  (Table 2, Fig. 9). We attribute

that to the occurrence of the RWGS reaction as suggested before by other researchers (23, 25, 28, 44). At or above 700°C, it was the CH<sub>4</sub> conversion that was higher (Table 2 and Fig. 9). Both CH<sub>4</sub> decomposition and CO<sub>2</sub> complete dissociation (i.e., CO<sub>2</sub>  $\rightarrow$  CO + O and then CO  $\rightarrow$  C + O; the surface oxygen adspecies can enhance CH<sub>4</sub> conversion (24–26)), would contribute to this phenomenon. As illustrated in Fig. 1, CO disproportionation can occur over the Ni–La<sub>2</sub>O<sub>3</sub>/5A catalyst. In other words, the CO originated in CO<sub>2</sub> decomposition can dissociate further to surface C and O.

The CO disproportionation process is exothermic and the equilibrium constant decreases with the rise in reaction temperature, whereas the decomposition of CH<sub>4</sub> is endothermic and the equilibrium constant increases with temperature rise. Reitmeier et al. (10) reported that for any reaction with a mixture of H<sub>2</sub>, CO, CH<sub>4</sub>, CO<sub>2</sub>, and H<sub>2</sub>O at thermodynamic equilibrium, the extent of graphitic carbon deposition decreased with temperature rise and the main cause for carbon deposition was CO disproportionation. With the increase in reaction temperature, we observed that the amount of deposited carbon decreased both in CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> and CO/N<sub>2</sub> atmospheres but increased in an atmosphere of CH<sub>4</sub>/N<sub>2</sub> (Fig. 3). According to the microscopic images (Fig. 2), there were the formations of filamentous whisker carbon in CO/N2 and CO2/CH4 atmospheres and encapsulated carbon in CH<sub>4</sub>/N<sub>2</sub>. Since the morphology of the carbon deposited in CO<sub>2</sub>/CH<sub>4</sub> is similar to that deposited in CO, we purpose that CO disproportionation is one of the main steps for carbon generation in CO<sub>2</sub> decomposition.

The observation of <sup>13</sup>CO<sub>2</sub> and CO<sub>2</sub> in the pulsing of O2 onto a H2-reduced Ni-La2O3/5A sample formerly exposed to <sup>13</sup>CH<sub>4</sub>/CO<sub>2</sub> indicates that both CH<sub>4</sub> and CO<sub>2</sub> contribute to the accumulation of deposited carbon (Fig. 4). The <sup>13</sup>CO<sub>2</sub>/CO<sub>2</sub> molar ratio decreased with O<sub>2</sub> pulse number (Fig. 5), indicating that the <sup>13</sup>C species derived from <sup>13</sup>CH<sub>4</sub> were more reactive toward O<sub>2</sub> than the <sup>12</sup>C species derived from CO<sub>2</sub>. Compared to the carbon deposited in CO and CO<sub>2</sub>/CH<sub>4</sub> exposures, the carbon deposited in CH<sub>4</sub> exposure could be removed more readily by CO<sub>2</sub> (Fig. 1); this is an indication that the carbon species generated in CH<sub>4</sub> dissociation are more reactive than those originated from CO or CO<sub>2</sub>. With the increase in temperature, the <sup>13</sup>CO<sub>2</sub>/CO<sub>2</sub> molar ratio decreased (Fig. 6); i.e., the contribution of CO<sub>2</sub> toward carbon deposition via CO (formed in CO<sub>2</sub> dissociation) disproportionation increased with the rise in temperature. It is clear that carbon deposition is predominantly due to CO<sub>2</sub> dissociation and CO disproportionation at temperatures above 700°C.

#### 3. Reaction Mechanism

3.1. The activation of CH<sub>4</sub> and CO<sub>2</sub>. The mechanism of CO<sub>2</sub>/CH<sub>4</sub> reforming has been extensively investigated.

Shustorovich and Bell (45) argued that O-assisted CH<sub>4</sub> dissociation is energetically unfavorable on Ni surfaces. In a XPS study, Alstrup et al. (46) reported that the presence of oxygen adatoms on nickel did not enhance CH<sub>4</sub> activation. However, based on DRIFT and activity results, Solymosi et al. (29, 30) claimed that the adsorbed O<sub>s</sub> generated in CO<sub>2</sub> dissociation facilitated the decomposition of CH<sub>4</sub>. By means of vibrational spectroscopy, Quinlan et al. (47) investigated the interaction of methane with preadsorbed oxygen on a Ni(100) surface, they concluded that oxygen adatoms could promote the dissociative adsorption of methane. To evaluate the possibility of oxygen-assisted dissociation of methane, Au et al. (48) performed theoretical calculations to estimate the activation energies of hydrogen abstraction from methane in elementary steps with or without the involvement of adsorbed oxygen on a Ni (111) surface; they concluded that oxygen located at on-top site assists methane dissociation, as suggested previously by Hu and Ruckenstein (49).

The amount of CH<sub>4</sub> converted in 5 pulses of CH<sub>4</sub> at 600°C over a H<sub>2</sub>-reduced Ni–La<sub>2</sub>O<sub>3</sub>/5A catalyst was 1.3  $\mu$ l, and we observed no generation of  $C_2H_6$ ,  $C_2H_4$ ,  $CO_x$ , etc. in the outlet (Table 3). It indicated that the carbon species (such as deposited carbon, CH<sub>x</sub> species) generated in CH<sub>4</sub> dissociation remained completely on the catalyst. When 337.5  $\mu$ l of CH<sub>4</sub> was pulsed onto a H<sub>2</sub>-reduced Ni-La<sub>2</sub>O<sub>3</sub>/5A catalyst pretreated with 5 pulses of CO<sub>2</sub> at 600°C (Table 2), CO was detected, indicating that there was interaction between CH<sub>4</sub> and the oxygen released in the dissociation of CO<sub>2</sub>. Taking into consideration that the amount of converted CH<sub>4</sub> (8.8 µl) over the CO<sub>2</sub>-treated catalyst was much more than that  $(1.3 \mu l)$  over the reduced catalyst, we propose that surface oxygen indeed promotes CH<sub>4</sub> decomposition. Similar observations were made at 700 and 800°C. Therefore, we advocate the idea of oxygen-assisted CH<sub>4</sub> dissociation. Of course, we do not exclude the possibility of direct methane dissociation on metallic nickel.

In contrast, the idea of H-assisted CO2 activation has been generally accepted (5, 29, 30, 38). The observation of CD<sub>3</sub>COOH in the CD<sub>3</sub>I chemical trapping experiments suggests that HCOO is an intermediate in CO<sub>2</sub>/CH<sub>4</sub> reforming. In the IR studies of CO<sub>2</sub>/CH<sub>4</sub> reforming, bands attributable to surface formate were not detected over Ni/La<sub>2</sub>O<sub>3</sub> (23, 37), Ni/SiO<sub>2</sub> (37), and Pt/TiO<sub>2</sub> (31), while over Ni/Al<sub>2</sub>O<sub>3</sub> (37) and Rh/TiO<sub>2</sub> (5), they were detected. It is apparent that the presence of formate is closely related to the nature of the catalyst. The La<sub>2</sub>O<sub>3</sub>/5A support in the Ni-La<sub>2</sub>O<sub>3</sub>/5A catalyst exhibited large specific surface area (157  $\text{m}^2 \text{ g}^{-1}$ ) and good affinity to  $\text{CO}_2$ . These are favorable factors for the production of surface formate species. The existence of HCOO on the working catalyst indicates that adsorbed CO<sub>2</sub> could react with adsorbed H on nickel. According to the EPR results (Figs. 12 and 13), compared to La<sub>2</sub>O<sub>3</sub>/5A, more trapped electrons were generated in

0.5 wt% Ni–La<sub>2</sub>O<sub>3</sub>/5A during H<sub>2</sub> reduction. It is possible that Ni<sup>0</sup> promotes H<sub>2</sub> dissociation and the spillover of hydrogen from Ni<sup>0</sup> enhances the reduction of La<sub>2</sub>O<sub>3</sub>. The decrease in the intensity of trapped electron signal after the introduction of CO<sub>2</sub> suggested that CO<sub>2</sub> could pick up a trapped electron to form CO<sub>2</sub>. Solymosi *et al.* (50) detected the IR signal of CO<sub>2</sub> at 1325 and 1695 cm<sup>-1</sup> on a K-modified Rh/SiO<sub>2</sub> catalyst. We envision that this CO<sub>2</sub> species can react with surface H to produce formate species. As indicated by the activity data of Table 2 and Fig. 9, CO<sub>2</sub> conversion was higher than CH<sub>4</sub> conversion in CO<sub>2</sub>/CH<sub>4</sub> reforming, possibly due to the RWGS reaction (5, 23, 25). This result is also a supporting evidence for the viewpoint that CO<sub>2</sub> dissociation can be activated by the surface hydrogen generated in CH<sub>4</sub> dissociation.

From Table 3, it can be seen that the total amount of CO (7.4  $\mu$ l) produced in the first 5 pulses of CO<sub>2</sub> and in the following 5 pulses of CH<sub>4</sub> was much smaller than that (280  $\mu$ l) generated in 10 pulses of CO<sub>2</sub>/CH<sub>4</sub> at 600°C. Similar observations were made at 700 and 800°C. Therefore, we suggest that CH<sub>4</sub> and CO<sub>2</sub> can activate each other mutually.

3.2. Reaction intermediates. As for  $CH_4$  activation,  $CH_4/CD_4$  isotope effect has been investigated before (25, 51). A simplified expression of  $CH_4/CD_4$  isotope effect for  $CO_2/CH_4$  reforming is

$$k_{\rm H}/k_{\rm D} = \exp(-(E_{\rm (H)}^0 - E_{\rm (D)}^0)/RT),$$

where  $k_{\rm H}$  and  $k_{\rm D}$  are the rate constants for CH<sub>4</sub>/CO<sub>2</sub> and  $CD_4/CO_2$  reactions and  $E^0_{(H)}$  and  $E^0_{(D)}$  the activation energies for spontaneous decomposition of hydrogencontaining and deuterium-containing adsorbed species, respectively. In the present study, we observed that with the increase in reaction temperature from 600 to 800°C, the deuterium isotope effect decreased (Fig. 9). This result is in accord with the equation for CH<sub>4</sub>/CD<sub>4</sub> isotope effect. Zhang et al. (27) and Burghgraef et al. (52), respectively, reported experimental and theoretical results of similar nature. At 800°C, the CH<sub>4</sub> and CO<sub>2</sub> conversions over Ni-La<sub>2</sub>O<sub>3</sub>/5A were, respectively, 92.1 and 79.7%, suggesting that the reaction was close to the thermodynamic equilibrium. In other words, the reaction was controlled by thermodynamics rather than by kinetics (5). Therefore, no CH<sub>4</sub>/CD<sub>4</sub> isotope effect was observed at 800°C. At 600°C, CH<sub>4</sub>/CD<sub>4</sub> isotope effect for CH<sub>4</sub> conversion was 1.2 over Ni-La<sub>2</sub>O<sub>3</sub>/5A (Fig. 9). This result indicates that C-H cleavages are slow kinetic steps. There are three possible ways for C-H cleavages in CO<sub>2</sub>/CH<sub>4</sub> reforming:

(i) 
$$CH_4 \rightarrow C + 4H$$

(ii) 
$$CH_x + O \rightarrow CO + xH$$

(iii) 
$$CH_rO \rightarrow CO + xH$$
.

Among them, step (i) was believed to be reversible. In Fig. 10, one can observe that CH<sub>4</sub> and CD<sub>4</sub> conversions are nearly equal. Consequently, no kinetic isotopic effect was observed, indicating direct CH<sub>4</sub> dissociation is largely reversible over the reduced Ni-La<sub>2</sub>O<sub>3</sub>/5A. This is in concord with the conclusions drawn by Au et al. (48) and Hu et al. (49) based on theoretical calculations. After investigating isotopic scrambling between CH<sub>4</sub> and CD<sub>4</sub> during CO<sub>2</sub> reforming of CH<sub>4</sub> over Ni/SiO<sub>2</sub>, Kroll et al. (53) pointed out that the decomposition of CH<sub>4</sub> was reversible. A similar conclusion was also reported by Bradford and Vannice (5, 21). By means of pulse surface reaction rate analysis (PSRA), Osaki et al. examined the CH<sub>x</sub> intermediates during CO<sub>2</sub>/CH<sub>4</sub> reforming over Co/Al<sub>2</sub>O<sub>3</sub> (32) and Ni/Al<sub>2</sub>O<sub>3</sub> (33), they proposed that step (ii) was rate-determining. According to the calculations on the surface reaction between  $CH_x$  and O, they concluded later that step (iii) was the ratedetermining step (54). Considering zero activation energies for radical reactions between CH<sub>x</sub> and OH as well as between  $CH_x$  and O in the gas phase (55), Bradford and Vannice (5, 21, 31) proposed that the dissociation of  $CH_xO$ to CO and H was rate-determining. Osaki *et al.* (32, 33, 54) and Bradford et al. (5, 21, 31), however, did not provide experimental evidences for such a suggestion. Our results of TG and CH<sub>4</sub>-CO<sub>2</sub> pulsing experiments demonstrate that the deposited carbon deriving from CH<sub>4</sub> reacts with CO<sub>2</sub> rather readily (Figs. 1 and 5). The absence of  $CH_x$  adspecies over  $Ni/La_2O_3$  (37)  $Ni/Al_2O_3$  (37),  $Ni/SiO_2$  (53) under reforming conditions had been confirmed by IR spectroscopic studies. These results indicated that the interaction of  $CH_x$ with surface oxygen species was fast. Thus we deduce that step (ii) is a combination of two elemental steps:

$$CH_x + O \rightarrow CH_xO$$
  
 $CH_xO \rightarrow CO + xH$ .

Since the former step is rather facile, we propose that the latter, i.e., step (iii), is rate-determining. The observation of  $CD_3CHO$ ,  $D_2CO$ , and HDCO in  $CD_3I$  chemical trapping indicated that there was HCO species on the working catalyst. No  $CD_3OCH_3$  was detected in  $CD_3I$  trapping and there was no  $CH_3OH$  detected in  $CO_2/CH_4$  reforming; we suggest that there is no methoxy present on the surface during the reforming reaction. It has been reported that formate dissociates rather readily to formyl and formaldehyde in  $H_2$  at high temperatures (56). Also, IR studies on formaldehyde adsorption demonstrated that  $H_2CO$  adsorption would give rise to formyl (56). Based on these understandings, we suggest that there were  $H_xCO$  (x=1 or 2) species on the working Ni–La<sub>2</sub>O<sub>3</sub>/5A catalyst and the decomposition of  $H_xCO$  (x=1 or 2) is rate-determining.

3.3. Reaction steps. Accordingly, we propose the following reaction pathways for  $CO_2/CH_4$  reforming. There is mutual activation between  $CH_4$  and  $CO_2$ . The

decomposition of  $CH_4$  on  $Ni^0$  can be assisted by the oxygen generated in  $CO_2$  dissociation via  $CH_xO$  (x=1 or 2) formation. The  $CO_2$  adsorbed on the basic sites dissociates with or without the aid of surface H species. The rate-determining step is the dissociation of  $CH_xO$  (x=1 or 2) to CO and H. The chemical equations involved are

$$CH_{4,s} \to CH_{x,s} + (4-x)H_{,s}$$
 [1]

$$CO_{2,s} \rightarrow CO_{.s} + O_{.s}$$
 [2]

$$CH_{4,s} + O_{.s} \rightarrow CH_xO_{.s} + (4-x)H_{.s}$$
 [3]

$$CO_{2,s} + xH_{,s} \rightarrow CH_xO_{,s} + O_{,s}$$
 [4]

$$CH_xO_{.s} \rightarrow CO + xH_{.s}$$
 (s = surface). [5]

#### **CONCLUSIONS**

Ni-La<sub>2</sub>O<sub>3</sub>/5A exhibited good catalytic performance for CO<sub>2</sub>/CH<sub>4</sub> reforming. Such activity could be related to the small metallic nickel crystallites (ca. 9 nm) generated on/in perovskite-like La<sub>2</sub>NiO<sub>4</sub>. Carbon deposition is the main reason for catalytic deactivation. The deposited carbon could be originated from both CH<sub>4</sub> and CO<sub>2</sub>; at higher temperatures, the contribution of CO<sub>2</sub> was more significant. Based on the facts that the TG profiles and TEM imagines of carbon formed in CO and CO2/CH4 atmospheres are very similar, we suggest that carbon deposition was mainly via CO disproportionation. The existence of H (or O) species on the catalyst surface could promote the activation of CO<sub>2</sub> (or CH<sub>4</sub>) significantly; a result of CO<sub>2</sub> and CH<sub>4</sub> mutual activation. We have proposed reaction pathways for the reforming reaction and suggested that  $CH_xO$  (x=1 or 2) decomposition is a rate-determining step.

#### **ACKNOWLEDGMENTS**

The work described above was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administration Region, China (Project No. HKBU 2053/98 P). We thank Prof. B. L. Zhang of Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences for performing the TEM investigation.

#### REFERENCES

- 1. Chubb, T. A., Sol. Energy 24, 341 (1980).
- Mccrary, J. H., Mccrary, G. E., Chubb, T. A., Nemecek, J. J., and Simmons, D. E., Sol. Energy 24, 141 (1982).
- 3. Fish, J. D., and Haun, D. C., J. Sol. Energy Eng. 109, 215 (1987).
- Edwards, J. H., Do, K. T., Maitra, A. H., Schuck, S., and Stein, W., Sol. Eng. 1, 389 (1995).
- Bradford, M. C. J., and Vannice, M. A., Catal. Rev.—Sci. Eng. 41(1), 1 (1999).
- 6. Nishiyama, T., and Aika, K. I., J. Catal. 122, 346 (1990).
- Sodesawa, T., Dobashi, A., and Nozaki, F., React. Kinet. Catal. Lett. 12, 107 (1979).
- 8. Gadalla, A. M., and Bower, B., Chem. Eng. Sci. 43, 3049 (1988).
- Sacco, A., Jr., Geurts, F. W. A. H., Jablonski, G. A., Lee, S., and Gately, R. A., J. Catal. 119, 322 (1989).

- Reitmeier, R. E., Atwood, K., Bennet, H. A., Jr., and Baugh, H. M., Ind. Eng. Chem. 40, 620 (1948).
- Perera, J. S. H. Q., Couves, J. W., Sankar, G., and Vernon, P. D. F., Nature (London) 35, 225 (1991).
- Ashcroft, A. T., Cheetham, A. K., Green, M. L. H., and Thomas, J. M., Catal. Lett. 11, 219 (1991).
- Yamazaki, O., Nozaki, T., Omata, K., and Fujimoto, K., Chem. Lett. 1953 (1992).
- 14. Zhang, Z. L., and Verykios, X. E., Catal. Today 21, 589 (1994).
- 15. Horiuchi, T., Sakuma, K., Fukui, T., Kubo, Y., Osaki, T., and Mori, T., *Appl. Catal. A: General* **144**, 111 (1996).
- 16. Chen, Y. G., and Ren, J., Catal. Lett. 29, 39 (1994).
- Sridhar, S., Du, S., and Seetharaman, S., Z. Metallkd. 85, 616 (1994).
- Bhattacharyya, A., and Chang, V. W., Stud. Surf. Sci. Catal. 88, 207 (1994).
- 19. Hu, Y. H., and Ruckenstein, E., Catal. Lett. 36, 145 (1996).
- Tomishige, K., Chen, Y. G., and Fujimoto, K., J. Catal. 181, 91 (1999).
- Bradford, M. C. J., and Vannice, M. A., Appl. Catal. A: General 142, 73 (1996); 142, 97 (1996).
- Zhang, Z. L., and Verykios, X. E., *J. Chem. Soc., Chem. Commun.* 71 (1995).
- Zhang, Z. L., Verykios, X. E., MacDonald, S. M., and Affrossman, S., J. Phys. Chem. 100, 744 (1996).
- 24. Wang, H. Y., and Au, C. T., Catal. Lett. 38, 77 (1996).
- Wang, H. Y., and Au, C. T., Appl. Catal. A: General 155, 239 (1997).
- Kim, G. J., Cho, D. S., Kim, K. H., and Kim, J. H., Catal. Lett. 28, 41 (1994).
- 27. Zhang, Z. L., and Verykios, X. E., Catal. Lett. 38, 175 (1996).
- Nakamura, J., Aikawa, K., Sato, K., and Uchijima, T., Catal. Lett. 25, 265 (1994).
- Solymosi, F., Kustan, Gy., and Erdöhelyi, A., Catal. Lett. 11, 149 (1991).
- Erdöhelyi, A., Fodor, K., and Solymosi, F., Stud. Surf. Sci. Catal. 107, 525 (1997).
- 31. Bradford, M. C. J., and Vannice, M. A., J. Catal. 173, 157 (1998).
- 32. Osaki, T., Masuda, H., and Mori, T., Catal. Lett. 29, 33 (1994).
- Osaki, T., Masuda, H., Horiuchi, T., and Mori, T., Catal. Lett. 34, 59 (1995).
- Melander, L., "Isotopic Effects on Reaction Rates." Ronald Press, New York, 1960.
- Deluzarche, A., Hindermann, J. P., Kiennemann, A., and Kieffer, K., J. Mol. Catal. 31, 225 (1985).
- Qiu, Z. W., "Electron Spin Resonance Spectroscopy." Academic Press, San Diego, 1980.
- Tsipouriari, V. A., Zhang, Z. L., and Verykios, X. E., *J. Catal.* 179, 283 (1998); Tsipouriari, V. A., Verykios, X. E., *J. Catal.* 187, 85 (1999).
- Luo, J. Z., Gao, L. Z., Yu, Z. L., and Au, C. T., Stud. Surf. Sci. Catal. 130, 689 (2000).
- Bitter, J. H., Seshan, K., and Lercher, J. A., J. Catal. 183, 336 (1999)
- Rostrup-Nielsen, J. R., and Bak Hansen, J. H., J. Catal. 144, 38 (1993).
- 41. Tsipouriari, V. A., Efstathiou, A. M., Zhang, Z. L., and Verykios, X. E., *Catal. Today* **21**, 579 (1994).
- Zhang, Z. L., and Verykios, X. E., Appl. Catal. A: General 138, 109 (1996).
- Swaan, H. M., Kroll, V. C. H., Martin, G. A., and Mirodatos, C., Catal. Today 21, 571 (1994).
- Erdöhelyi, A., Cserenyi, J., and Solymosi, F., J. Catal. 141, 287 (1993).
- 45. Shustorovich, E., and Bell, A. T., Surf. Sci. 248, 397 (1992).

 Alstrup, I., Chorkendorff, I., and Ullmann, S., Surf. Sci. 234, 79 (1990).

- 47. Quinlan, M. A., Wood, B. J., and Wise, H., *Chem. Phys. Lett.* **118**(5), 478 (1985).
- 48. Au, C. T., Liao, M. S., and Ng, C. F., J. Phys. Chem. A 102, 3959 (1998).
- 49. Hu, Y. H., and Ruckenstein, E., Catal. Lett. 34, 41 (1995).
- 50. Solymosi, F., and Knözinger, H., J. Catal. 122, 166 (1990).
- Osaki, T., Horiuchi, T., Suzuki, K., and Mori, T., *J. Chem. Soc. Faraday Trans.* 92, 1627 (1996).
- Burghgraef, H., Jansen, A. P. J., and van Santen, R. A., *J. Chem. Phys.* 101, 11,012 (1994).
- Kroll, V. C. H., and Swaan, H. M., and Mirodatos, C., J. Catal. 161, 409 (1996).
- 54. Osaki, T., Fukaya, H., Horiuchi, T., Suzuki, K., and Mori, T., *J. Catal.* **180**, 106 (1998).
- Miller, J. A., and Bowman, C. T., *Prog. Energy Comb. Sci.* 15, 287 (1989).
- 56. Edwards, J. F., and Schrader, G. L., J. Phys. Chem. 89, 782 (1985).